Weighted Distances for Fuzzy Clustering
نویسندگان
چکیده
The distance measure is an important criterion in any clustering algorithm. This paper shows how fuzzy clustering results can be improved by introducing a weighting factor in the inter-objects distance measures. New weighted versions of four well-known distance measures are considered. These distances are tested, using the fuzzy c-means algorithm, on three datasets. Experimental results show that the introduced weighting factor leads to a significant improvement in comparison with the standard unweighted distances.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA Novel Fuzzy Weighted C-Means Method for Image Classification
Much research has shown that fuzzy c-means clustering is a powerful tool for partitioning samples into different categories. However, the cost function of the classical fuzzy c-means (FCM) is defined by the distances from data to the cluster centers with their fuzzy memberships. In this study, a new fuzzy clustering algorithm, namely the fuzzy weighted c-means (FWCM), is proposed. In this propo...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملEnhancement of fuzzy clustering by mechanisms of partial supervision
Semi-supervised (or partial) fuzzy clustering plays an important and unique role in discovering hidden structure in data realized in presence of a certain quite limited fraction of labeled patterns. The objective of this study is to investigate and quantify the effect of various distance functions (distances) on the performance of the clustering mechanisms. The underlying goal of endowing the c...
متن کاملFuzzy Kohonen clustering networks for interval data
The Fuzzy Kohonen Clustering Network combines the idea of fuzzy membership values for learning rates. It is a kind of self-organizing fuzzy neural network that can show great superiority in processing the ambiguity and the uncertainty of data sets or images. Symbolic data analysis provides suitable tools for managing aggregated data described by intervals. This paper introduces Fuzzy Kohonen Cl...
متن کامل